Weighted Norm Inequalities for Fractional Bergman Operators
نویسندگان
چکیده
منابع مشابه
Weighted Norm Inequalities for Fractional Operators
We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...
متن کاملNorm Inequalities for Composition Operators on Hardy and Weighted Bergman Spaces
Any analytic self-map of the open unit disk induces a bounded composition operator on the Hardy space H and on the standard weighted Bergman spaces Aα. For a particular self-map, it is reasonable to wonder whether there is any meaningful relationship between the norms of the corresponding operators acting on each of these spaces. In this paper, we demonstrate an inequality which, at least to a ...
متن کاملWeighted Inequalities for Generalized Fractional Operators
In this note we present weighted Coifman type estimates, and twoweight estimates of strong and weak type for general fractional operators. We give applications to fractional operators given by an homogeneous function, and by a Fourier multiplier. The complete proofs of these results appear in the work [5] done jointly with Ana L. Bernardis and Maŕıa Lorente.
متن کاملHankel Operators on Weighted Bergman Spaces and Norm Ideals
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2019
ISSN: 0176-4276,1432-0940
DOI: 10.1007/s00365-019-09470-5